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Abstract

We use an in vivo methodology to investigate the re-
sponses of scientists to anomalies. Protocols of 3 scien-
tists performing data analysis in 2 domains were ana-
lyzed. We found that the scientists noticed anomalies and
paid more attention to them than to expected data. This
attention took the form of proposing a hypothesis and
then elaborating that hypothesis by reference to other
data in the visual display, rather than to the scientists’
theoretical domain knowledge.

Introduction
How do scientists deal with anomalous or unexpected
data? Philosophers of science (e.g., Kuhn, 1962; Laka-
tos, 1976) have argued that anomalies play a crucial
role in moving science forward. Scientists themselves
have claimed that investigating anomalies lies at the
heart of scientific innovation (e.g., Knorr, 1980).

Psychologists have been interested in the cognition
underlying how scientists deal with anomalies. There
have been two general approaches to the study of
anomalies. One approach focuses on response to nega-
tive evidence in concept identification tasks (Wason,
1960). Several studies have found that people are likely
to seek confirming evidence for their theories (e.g.,
Mynatt, Doherty, & Tweney, 1977).

Surprisingly, studies from this tradition have found
that scientists are also very susceptible to confirmation
bias (e.g., Mahoney & DeMonbreun, 1977). One criti-
cism of this approach is that the tasks are abstractions
of the hypothesis-testing cycle and therefore do not
allow the participants to make use of their extensive
domain knowledge (e.g., Chinn & Malhotra, 2001).
However, sociological studies (e.g., interviews) of
practicing scientists have also found that scientists ap-
pear to display confirmation bias (Mitroff, 1974).

A second approach investigates scientists' response to
anomalies as they perform analyses of authentic scien-
tific data. This approach includes both historical studies
of scientific discovery (Chinn & Brewer, 1992; Kul-
karni & Simon, 1988; Nersessian, 1999) and in vivo
observations of contemporary practicing scientists
(Dunbar, 1997; Trickett, Trafton, & Schunn, 2000).
Chinn and Brewer have developed a taxonomy of re-
sponses, from ignoring the anomaly to changing the
theory. They have found evidence for the whole range

of responses in historical records of science. Yet the
results of other studies suggest that scientists do pay
attention to anomalies. For example, Dunbar (1997)
found that individual scientists were quick to discard a
hypothesis when faced with results that were inconsis-
tent with it, and Kulkarni and Simon (1988) identified
an "attend to surprising result" heuristic as crucial to
Hans Krebs' discovery of the urea cycle.

Recently, Alberdi, Sleeman and Korpi (2000) have
brought together these two approaches to the study of
anomalies in scientific thinking. They conducted a psy-
chological study of expert botanists performing a cate-
gorization task in the domain of plant taxonomy. As
participants formed hypotheses about the category into
which a current set of plants would fall, they were pre-
sented with a "rogue," or anomalous, item that belied
their expectations. Alberdi and his colleagues found
that participants did indeed pay attention to the anoma-
lies. Furthermore, they identified a number of strategies
by which participants attempted to resolve the anoma-
lous data. Key among these was the "instantiate" strat-
egy, in which participants searched their theoretical
domain knowledge for a new hypothesis that would
accommodate the anomaly.

Although categorization is an important task in many
areas of science, there are many other situations in
which scientists might encounter anomalies. For exam-
ple, to name a few, experimental results might fail to
match a prediction, a computational model might yield
a different output from expectation, or empirical data
might contain puzzling phenomena hard to explain by
means of current theoretical understanding. Thus, many
questions remain about other circumstances under
which a scientist encounters an anomaly in the course
of his or her own research.

The goal of this paper is to investigate scientists' re-
sponse to anomalies they discover as they analyze their
own data. Our first question concerns the extent to
which scientists attend to anomalous data. One can
imagine a range of possible responses, from ignoring
the anomaly to attempting to give a full accounting of it
(Chinn and Brewer, 1992). Do practicing scientists tend
to ignore anomalies as suggested by Mitroff (1974) or
do they attend to anomalies as suggested by Dunbar
(1997) and Alberdi et al. (2000)? Our second question
concerns the processes and strategies by which scien-



tists deal with anomalies when they encounter them. Do
they  take a theoretical approach, as found by Alberdi et
al (2000) or focus on the data itself? Alternatively, ad-
ditional strategies might emerge from observing scien-
tists at work. We investigate all these possibilities.

Method
In order to investigate the issues discussed above, we
have adapted Dunbar’s in vivo methodology (Dunbar,
1997; Trickett, Trafton & Schunn, 2000). This approach
offers several advantages. It allows observation of ex-
perts, who can use their domain knowledge to guide
their strategy selection. It also allows the collection of
"on-line" measures of thinking, so that the scientists'
thought processes can be examined as they occur. Fi-
nally, the tasks the scientists do are fully authentic.

Two sets of scientists were videotaped while con-
ducting their own research. All the scientists were ex-
perts, having earned their Ph.D.s more than 6 years
previously. In the first set, two astronomers, one a ten-
ured professor at a university, the other a fellow at a
research institute, worked collaboratively to investigate
computer-generated visual representations of a new set
of observational data. At the time of this study, one
astronomer had approximately 20 publications in this
general area, and the other approximately 10. The as-
tronomers have been collaborating for some years, al-
though they do not frequently work at the same com-
puter screen and the same time to examine data.

In the second dataset, a physicist with expertise in
computational fluid dynamics worked alone to inspect
the results of a computational model he had built and
run. He works as a research scientist at a major U.S.
scientific research facility and had earned his Ph.D. 23
years ago. He had inspected the data earlier but made
some adjustments to the physics parameters underlying
the model and was therefore revisiting the data.

Both sets of scientists were instructed to carry out
their work as though no camera were present and with-
out explanation to the experimenter (Ericsson & Simon,
1993).  The relevant part of the astronomy session
lasted about 53 minutes, and the physics session, 15
minutes. All utterances were later transcribed and seg-
mented according to complete thought. All segments
were coded by 2 coders as on-task (pertaining to data
analysis) or off-task (e.g., jokes, phone interruptions,
etc.). Inter-rater reliability for this coding was more
than 95%. Off-task segments were excluded from fur-
ther analysis. On-task segments (N = 649 for astronomy
and N = 176 for physics) were then grouped into epi-
sodes (N = 19 for astronomy and N = 9 for physics).
Episodes began with the scientists' focus on a phe-
nomenon and lasted until attention switched to another
feature or theoretical issue. This grouping of the proto-
col into episodes allowed us to focus on the more im-
mediate reaction to anomalies.

The Tasks and the Data
Astronomy The data under analysis were optical and
radio data of a ring galaxy. The astronomers’ high-level
goal was to understand its evolution and structure by
understanding the flow of gas in the galaxy. In order to
understand the gas flow, the astronomers must make
inferences about the velocity field, represented by con-
tour lines on the 2-dimensional display.

The astronomers’ task was made difficult by two
characteristics of their data. First, the data were one- or
at best 2-dimensional, whereas the structure they were
attempting to understand was 3-dimensional. Second,
the data were noisy, with no easy way to separate noise
from real phenomena. Figure 1 shows a screen snapshot
of the type of data the astronomers were examining. In
order to make their inferences, the astronomers used
different types of image, representing different phe-
nomena (e.g., different forms of gas), which contain
different information about the structure and dynamics
of the galaxy. In addition, they could choose from im-
ages created by different processing algorithms, each
with advantages and disadvantages (e.g., more or less
resolution). Finally, they could adjust some features of
the display, such as contrast or false color.

Figure 1: Example of data examined by astronomers.
Radio data (contour lines) are laid over optical data.

Physics The physicist was working to evaluate how
deep into a pellet a laser light will go before being re-
flected. His high-level goal was to understand the fun-
damental physics underlying the reaction, an under-
standing that hinged on comprehending the relative
importance and growth rates of different modes. The
physicist had built a model of the reaction; other scien-
tists had independently conducted experiments in which
lasers were fired at pellets and the reactions recorded. A



close match between model and empirical data would
indicate a good understanding of the underlying theory.
Although the physicist had been in conversation with
the experimentalist, he had not viewed the empirical
data, and in this session he was investigating only the
results of his computational model. However, he be-
lieved the model to be correct (i.e., he had strong ex-
pectations about what he would see), and in this sense,
this session may be considered confirmatory.

The data consisted of two different kinds of repre-
sentation of the different modes, shown over time
(nanoseconds). The physicist was able to view either a
Fourier decomposition of the modes or a representation
of the “raw” data. Figure 2 shows an example of the
physicist's data. He could choose from black-and-white
or a variety of color representations, and could adjust
the scales of the displayed image, as well as some other
features. He was able to open numerous views simulta-
neously. A large part of his task was comparing images,
both different types of representation of the same data
and different time slices represented in the same way.

Figure 2: Example of data examined by physicist
Fourier modes (left) and raw data (right)

Coding Scheme
Our goal in this research was to investigate scientists'
response to anomalous data. First, we wanted to estab-
lish whether and to what extent the scientists noticed
and attended to anomalies. Second, we wanted to in-
vestigate the processes by which they respond.

Both protocols were coded independently by 2 differ-
ent coders. Initial inter-rater reliability for each code
was greater than 85%. Disagreements were resolved by
discussion. Any coding disagreements that could not be
resolved were excluded from further analysis.

Noticings In order to establish which phenom-
ena—unusual or not—the scientists attended to, we first
coded for the scientists' noticing phenomena in the data.
A noticing could involve merely some surface feature
of the display, such as a line, shape, or color, or it could
involve some interpretation, for example, identifying an
area of star formation or the implied presence of a
mode. Only the first reference to a phenomenon was
coded as a noticing; coding of subsequent references to

the same phenomenon is discussed below.
Because our investigation focused on the extent to

which the scientists attended to anomalies in the data,
we further coded these noticings as either "anomalous"
or "expected," according to one or more of the follow-
ing criteria: a) in some cases the scientist made explicit
verbal reference to the fact that something was anoma-
lous or expected; b) if there was no explicit reference,
domain knowledge was used to determine whether a
noticing was anomalous or not;1 c) a phenomenon
might be associated with (i.e., identified as like) another
phenomenon that had already been established as
anomalous or not; d) a phenomenon might be con-
trasted with (i.e., identified as unlike) a phenomenon
that had already been established as anomalous or not;
e) a scientist might question a feature, thus implying
that it is unexpected. Table 1 illustrates these codes.

Criterion Code Example

Explicit Anomalous What's that funky
thing…That's odd

Domain
Knowledge Expected You can see that all the H1

is concentrated in the ring

Association Anomalous You see similar kinds of
intrusions along here

Contrast Expected

That's odd…As opposed to
these things , which are just
the lower contours down
here

Question Anomalous

I still wonder why we don't
see any H1 up here in this
sort of northern ring seg-
ment?

Table 1: Noticings (in italics): anomalous or expected

Subsequent References One of our questions was the
extent to which the scientists attended to anomalies.
The coding of noticings captured only the first refer-
ence to a phenomenon of interest; we needed to estab-
lish how frequently they made subsequent reference to
each noticing. Consequently, all subsequent references
were also identified and coded.2 Not all subsequent
references immediately followed a noticing; frequently,
the scientists returned to a phenomenon after investi-
gating other features of the data. Subsequent references
were identified both within the episode in which the
noticing had occurred and across later episodes.

The rest of the coding scheme addresses how the sci-
entists responded to the anomalies, in particular imme-
                                                          
1 The coders’ domain knowledge came from textbooks and
interviews with the scientists.
2 In the astronomy dataset, because the scientists shared a
computer monitor, frequently the first interaction between
them after a noticing was to make sure they were both looking
at the same thing. Subsequent references that served purely to
establish identity were not included in the analyses.



diately after they notice the anomalies. To investigate
the scientists’ immediate response to their anomalous
findings, we coded 10 utterances following each notic-
ing, whether anomalous or expected (minus utterances
establishing which phenomenon was under discussion,
in the astronomy dataset). We anticipated that scientists
would attempt to produce hypotheses for the anomalies,
and that some of these hypotheses would be discussed
further. Based on the results reported by Alberdi, et al.
(2000), we investigated the extent to which elaboration
of hypotheses was grounded in theory or in the visual
display of the data. We also anticipated the use of addi-
tional strategies and inspected the data to identify
strategies that emerged, as discussed below.
Hypotheses Statements that attempted to provide a
possible explanation for the data were coded as hy-
potheses. All hypotheses were further coded as elabo-
rated or unelaborated. Elaboration consisted of one or
more statements that either supported or opposed the
hypothesis. Hypotheses that were not discussed after
they were proposed were coded as unelaborated.

When a hypothesis was elaborated, we coded
whether the elaboration was theoretical or visual. When
evidence for or against a hypothesis was grounded in
theoretical domain knowledge, elaboration was coded
as theoretical; when evidence came from the display, it
was coded as visual.
Place in context A strategy that emerged from our ex-
amination of the data was considering the noticing in
relation to other data. Thus we coded whether or not the
scientist placed the noticing in context, and whether
that context was another part of the dataset (local) or
the scientist's own theoretical knowledge (global).

Results and Discussion
Noticing Anomalies
Our first question was did the scientists notice anoma-
lies in the data? 3 Recall that a “noticing” is a first-time
reference to a phenomenon of interest. Table 2 presents
the total number of noticings for each dataset and the
percentages of anomalous and expected phenomena. As
Table 2 shows, at least one-third of the phenomena the
astronomers identified and almost one-half the physicist
identified were unusual in some way. It appears then
that the scientists did notice anomalies in their data.

Total
Noticing

Anomalous Expected
Not

coded
Astronomy 27 33% 48% 19%

Physics 9 44% 44% 12%

Table 2: Frequency of anomalies and expected noticings

                                                          
3 We presented a more detailed discussion of a subset of the
results for the astronomy dataset in Trickett et al. (2000).

Attention to Anomalies
Once the scientists had identified something unusual in
the data, what did they do with this observation? There
are several possible reactions: they could pursue the
anomaly in order to try to account for it, they might
temporarily disregard it but return to it later, or they
might move on to explore some other, better under-
stood, aspect of the data. A related question is whether
their response to anomalies was different from their
response to expected phenomena.

We investigated this issue by counting how often the
scientists made subsequent reference to a noticing im-
mediately upon identifying it. If anomalies and ex-
pected phenomena are of equal interest, we would ex-
pect them to make a similar number of references to
both the anomalous and expected patterns. However, if
anomalies play a more important role in their efforts to
understand the data, we would expect them to pay more
attention (measured by the number of subsequent refer-
ences) to anomalies than to expected observations.

As Table 3 shows, for both the astronomy and phys-
ics datasets, scientists paid more attention to anomalies
than expected phenomena, t(28)=2.33, p<.05. In the
case of astronomy, the anomalies received over 3 times
as many subsequent references within the same episode
as the expected phenomena. The physics dataset fol-
lows a similar pattern, with more than twice as many
references to anomalies as expected phenomena. The
results are in stark contrast to the findings of the con-
firmation bias literature.

Anomalies Expected
Astronomy 7.6 1.5

Physics 3.0 1.25

Table 3: Mean number of subsequent references per
noticed object to anomalies and expected phenomena

Immediate Response to Anomalies
We have shown that when the scientists noticed an
anomaly, they immediately attended to it, but we have
not analyzed the content of that attention to anomalies.
In order to understand how the scientists dealt with the
anomalies, we now turn to the results of the second part
of our coding scheme, which was applied to the 10 ut-
terances that immediately followed the initial noticing
of anomalies and expected phenomena.

Identify Features As Figure 3 shows, the scientists
were only slightly (and nonsignificantly) more likely to
identify specific features of the anomalies as the ex-
pected noticings, and this pattern held for both domains.

Propose Hypothesis As Figure 4 shows, the scientists
were much more likely to propose a hypothesis for the



anomalies than the expected noticings χ2(1) = 7.5,
p<.05 , and this pattern was very strong in both do-
mains.

Figure 3: Percentage of noticings for which scientists
identified features.
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Figure 4: Percentage of noticings with hypotheses
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Elaborated Hypothesis Once the scientists had pro-
posed a hypothesis (primarily about the anomalies), in
most cases they elaborated that hypothesis. Figure 5
presents the proportion of hypotheses that were elabo-
rated within each domain for expected and anomalous
noticings. In most cases, scientists attempted to elabo-
rate the hypotheses, for both expected and anomalous
noticings (note that there were no hypotheses to elabo-
rate in the expected physics case).

Figure 5: Percentage of noticings that were elaborated
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Source of Elaboration For the physics dataset, there
were not enough elaborated hypotheses to analyze fur-
ther. For the astronomy data, evidence about 4 of the 5
hypotheses about anomalies came from the visual dis-
play. The 2 hypotheses about expected noticings were
developed theoretically. Figure 6 shows this result.

Figure 6: Elaboration type for hypotheses (astronomy)
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Place in Context In addition to (or instead of) devel-
oping hypotheses about the noticings, the scientists also
might consider the noticing in relation to other infor-
mation, either theoretical information in memory
(global context) or information about the current dataset
(local context), or they might not place it in either con-
text. In fact, none of the noticings was considered in the
context of the scientists' theoretical knowledge (global).
However, the scientists considered the noticings in the
context of the current dataset (local), and this sequence
occurred more frequently for the anomalies than for the
expected phenomena, especially in the astronomy
dataset (see Figure 7), χ2(1) = 9.21, p<.01.

Figure 7: Percentage of noticings put in local context
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General Discussion and Conclusion
We examined the behavior of scientists at work, ana-
lyzing their own data. Our results show that these sci-
entists not only notice anomalies in the data, but also
attend to them, contrary to the confirmation bias litera-
ture, but similar to the findings of Dunbar (1997) and
Alberdi et al. (2000).



The scientists we observed not only notice and attend
to anomalies, but also do so in a particular way. Fur-
thermore, this pattern is quite different from the pattern
that results from their observation of expected phenom-
ena. When they notice an expected phenomenon, after
identifying or describing its features, the scientists are
likely to engage in no further elaboration of the phe-
nomenon. On the rare occasions when they do attempt
to account for it by proposing a hypothesis, they seek
evidence in their own theoretical knowledge, rather
than in the visually displayed data. By contrast, how-
ever, for anomalous noticings, the scientists attempt to
account for the anomaly by proposing a hypothesis.
They then elaborate the hypothesis, primarily by seek-
ing evidence in the visual display, and finally consider
how the anomaly relates to neighboring phenomena
within the same display.

Our results mesh in part with those of other research-
ers in that they provide further evidence for the impor-
tant role played by anomalies as scientists analyze and
reason about data. However, our results differ from
those of Alberdi et al. (2000) in some significant ways.
When the botanists in their study encountered an anom-
aly, they were most likely to use a strategy of theory-
driven search for an explanation. The scientists in our
study, however, sought support for hypotheses in the
visually displayed data, and attempted to place the
anomaly in the local context of neighboring phenom-
ena. Only hypotheses about expected phenomena were
developed at a theoretical level.

There are several possible explanations for this dif-
ference. Situational differences in the tasks performed
by the participants in these two studies might affect
their strategy. For the botanists, categorization was the
goal per se. Although the astronomers and physicist
were performing some categorization tasks, this was
done in service of understanding the data as a whole, in
order to build a mechanistic theory. The difference in
their goals might account for the different strategies
they used. Another possibility is that the botanists were
getting immediate feedback on their hypotheses,
whereas the other scientists had to generate their own
feedback. In this sense, the botanists' task is similar to a
supervised learning task, whereas the astronomers and
physicist were in a situation where learning was unsu-
pervised (Hertz, Krogh, & Palmer, 1991). It is plausible
that the uncertainties inherent in this situation can ac-
count for the fact that these scientists sought feedback
in the empirical data in the display rather than jumping
immediately to their theoretical domain knowledge.
One might expect that later in the research process, the
scientists would shift to more theoretical explorations
of the anomalies.
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